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ABSTRACT

Motivation: A plethora of bioinformatics analysis has led to the
discovery of numerous gene sets, which can be interpreted as
discrete measurements emitted from latent signaling pathways. Their
potential to infer signaling pathway structures, however, has not been
sufficiently exploited. Existing methods accommodating discrete
data do not explicitly consider signal cascading mechanisms that
characterize a signaling pathway. Novel computational methods are
thus needed to fully utilize gene sets and broaden the scope from
focusing only on pairwise interactions to the more general cascading
events in the inference of signaling pathway structures.
Results: We propose a gene set based simulated annealing (SA)
algorithm for the reconstruction of signaling pathway structures.
A signaling pathway structure is a directed graph containing up to
a few hundred nodes and many overlapping signal cascades, where
each cascade represents a chain of molecular interactions from the
cell surface to the nucleus. Gene sets in our context refer to discrete
sets of genes participating in signal cascades, the basic building
blocks of a signaling pathway, with no prior information about gene
orderings in the cascades. From a compendium of gene sets related
to a pathway, SA aims to search for signal cascades that characterize
the optimal signaling pathway structure. In the search process, the
extent of overlap among signal cascades is used to measure the
optimality of a structure. Throughout, we treat gene sets as random
samples from a first-order Markov chain model. We evaluated
the performance of SA in three case studies. In the first study
conducted on 83 KEGG pathways, SA demonstrated a significantly
better performance than Bayesian network methods. Since both
SA and Bayesian network methods accommodate discrete data,
use a ‘search and score’ network learning strategy and output a
directed network, they can be compared in terms of performance
and computational time. In the second study, we compared SA and
Bayesian network methods using four benchmark datasets from
DREAM. In our final study, we showcased two context-specific
signaling pathways activated in breast cancer.
Availibility: Source codes are available from http://dl.dropbox.com/
u/16000775/sa_sc.zip
Contact: dzhu@wayne.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The main goal of computational systems biology is to reveal and
explain general organizing principles of living systems. In particular,
the structural inference of signaling pathways is important to better
understand fundamental cell functions such as growth, metabolism,
differentiation and apoptosis, which are driven by simultaneous
action of several cascades of reactions from the cell surface to the
nucleus (Alberts et al., 2002). Since signaling cascades represent the
basic building blocks of signaling pathways, it is necessary to extract
useful insights about them from various molecular profiling data. In
recent years, gene set compendiums and tools for their analysis have
become increasingly available due to rapid advancements in high-
throughput data acquisition methods (e.g. Subramanian et al., 2005;
Tian et al., 2005; Medina et al., 2009; Glabb et al., 2010; Park et al.,
2010). However, challenges remain in exploring signal cascading
mechanisms from such data, which can be interpreted as discrete
measurements emitted from latent signaling pathway structures.

Many algorithms for biological network inference accommodate
discrete inputs (e.g. Altay and Emmert-Streib 2010a). Discretization
has especially proved useful in the structural inference of
signaling pathways, which are directed networks containing up
to a few hundred nodes and several overlapping signal cascades
where each cascade represents a directed or ordered chain
of molecular interactions. For example, existing non-metabolic
pathway structures in the KEGG database (Kanehisa et al., 2010)
contain up to 400 nodes. Significant efforts in the inference
of signaling pathway structures include Boolean or Probabilistic
Boolean networks (e.g. Shmulevich et al., 2002; Kaderali et al.,
2009) and Bayesian networks (e.g. Frideman et al., 2000; Segal
et al., 2003), which directly benefit from reduced computational
complexity by utilizing discrete inputs. Even in the inference
of large-scale undirected network topologies using ARACNE
(Margolin et al., 2006), C3NET (Altay and Emmert-Streib, 2010b),
CLR (Faith et al., 2007), MRNET (Meyer et al., 2007) and
Relevance Networks or RNs (Butte and Kohane, 2000), discrete
measurements are employed to estimate mutual information (MI)
between gene pairs. Therefore, it is increasingly clear that discrete
measurements hold promises for inferring biological networks.

Bayesian network methods are commonly used in the inference
of signaling pathway structures. However, these methods primarily
focus on statistical causal interactions. Thus, the learned networks
need not represent signal cascading mechanisms. How to better use
discrete measurements available in the form of unordered gene sets,
which may be thought of as the observed overlapping and incomplete
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signal cascading events, remains an open area of research. A few
attempts made toward the inference of communication networks
from co-occurrence data find applications in biomedical field (e.g.
Rabbat et al., 2008), but significant advantages of inferring signaling
pathway structures from gene sets are yet to be demonstrated.

We attempt to overcome the issues raised above by presenting
a novel computational approach for inferring the optimal signaling
pathway structure from partially observed and overlapping gene sets
related to a pathway. Identification of pathways from molecular
profiling data is a relatively well-studied problem and has been
explored in the literature (Xu et al., 2010). However, issues
still remain in reconstructing signal cascading mechanisms in
the pathways of interest. In our study, we specifically focus on
this problem. Our motivation stems from considering a signaling
pathway structure as an ensemble of overlapping and linear signaling
cascades, which we refer to as information flows (IFs). In other
words, the true signaling pathway structure can be constructed by
assembling the IFs into a single unit. As a gene may simultaneously
participate in multiple IFs, the extent of overlap among IFs is an
integral part of the construction. The set of all genes in an IF, with
no information about the order in which they appear in the IF, is
called an information flow gene set (IFGS) (Acharya et al., 2011).
We observe partial or complete IFGSs but not the order in which their
component genes appear in the corresponding IFs. We propose to
explore the overlapping information among IFGSs in order to infer
underlying IFs, which in turn define the signaling pathway structure.

As there exist L! different gene orderings for an IFGS with
L component genes, a total of L!m signaling pathway structures
can be constructed by combining m such IFGSs. An exhaustive
search for the true structure among L!m candidate structures may
be computationally intractable, even when the values of m and L are
controlled. To address this issue, we translate our goal of signaling
pathway structure inference from IFGSs into a discrete optimization
problem. We then propose a simulated annealing (SA) algorithm
to locate the optimal signaling pathway structure. SA (Kirkpatrick
et al., 1983) is a well-known search algorithm for solving global
optimization problems. SA finds its root in the field of metallurgy,
where a metal is heated and then cooled down slowly so that the
atoms gradually configure themselves in states of lower internal
energy, refining the crystalline structure of the metal. Compared with
other global search algorithms such as genetic algorithm (Holland,
1992) and tabu search (Glover, 1989), SA is easier to understand
and to implement without sacrificing performance. Since genetic
algorithm is a population-based search method and tabu search is
a memory-based heuristic, each iteration of SA runs faster than the
two approaches. SA also requires a small number of user-specified
parameters. In the past, SA has inspired various bioinformatics
researches (e.g. Baker, 2004; Gonzalez et al., 2007; Chen et al.,
2010).

We develop a new gene set-based SA to infer signaling
cascades that characterize the optimal signaling pathway structure.
Throughout we treat IFGSs as variables and their orders as random.
We also introduce a novel score function to measure the optimality,
referred to as energy, of a candidate signaling pathway structure.
Annealing refers to taking educated jumps in a feasible set of
signaling pathway structures, where the true structure has the
lowest energy. In the search process, the algorithm may jump to a
neighboring structure with lower energy, resulting in a better move,
or may accept to jump to a structure possessing higher energy in

Fig. 1. SA begins with a randomly chosen signaling pathway structure in the
feasible set. It explores the feasible set in order to locate the structure with
the minimum energy (the true signaling pathway structure). The feasible
set is composed of of signaling pathway structures with the same degree
distribution as the true signaling pathway.

order to avoid getting trapped in a local minimum. Initially, when
the temperature is high, the algorithm actively explores the feasible
set. As cooling takes place, it spends more time around the global
minimum. At any time instant, the algorithm only needs to keep
track of the best-so-far structure. Figure 1 presents the work flow of
the proposed approach.

We evaluated the performance of SA in three different case
studies. The first study was conducted on 83 gene set compendiums
derived from the KEGG database, where SA demonstrated a
significantly better performance in recovering the true signaling
mechanisms than Bayesian network methods. Since both SA and
Bayesian network methods accommodate discrete inputs, use a
‘search and score’ network learning strategy and output a directed
network, they can be compared in terms of performance and
computational time. Non-search-based approaches, e.g. MI-based
gene regulatory network inference methods, are computationally
more efficient than search algorithms and can be used to infer large-
scale networks with thousands of genes. However, these approaches
are suitable for inferring undirected pairwise dependencies. Thus,
only the comparison between SA and Bayesian network methods is
relevant to the present context. In the second study, we compared
the performance of SA and Bayesian network methods using four
benchmark Escherichia coli datasets available from the DREAM
initiative. In the final study, we inferred two context-specific
signaling pathway structures activated in breast cancer.

2 METHODS

2.1 Reconstruction of signaling pathway structures as
a discrete optimization problem

Throughout we denote an IFGS (unordered gene set) by Xi
and an IF (ordered gene set) by (Xi,�i), where �i represents
an ordering of genes (nodes) in Xi, i=1,...,m. Notations X
and (X,�) are used for an IFGS compendium and a signaling
pathway structure, respectively, where X = (X1,...,Xm) and
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�= (�1,...,�m). A signaling pathway structure (X,�) is
constructed by combining the IFs (Xi,�i) into a single unit. The
length of an IFGS Xi is the number of genes present in it and is
denoted by Li. As there exist Li! different gene orderings for Xi, a
total of

∏m
i=1Li! distinct structures can be constructed from X. We

formulate the reconstruction of true signaling pathway structure as
a discrete optimization problem

min
(X,�)∈FX

E(X,�) (1)

where E(X,�) stands for the energy of the signaling pathway (X,�)
and FX , called the feasible set, represents the set of candidate
structures corresponding to the IFGS compendium X. The true
signaling pathway can be inferred by (i) defining the energy E(X,�),
(ii) defining the feasible set FX of candidate signaling pathway
structures such that the true structure has the lowest energy among
the candidates and (iii) searching for the true signaling pathway
structure in FX .

2.2 Energy of a signaling pathway structure
We propose a novel function to score a candidate signaling pathway
structure by treating IFGSs as random samples from a first-order
Markov chain model. The score of a signaling pathway structure
(X,�) is interpreted as its energy and is defined as

E(X,�) = −
m∑

i=1

log�(Xi,�i), (2)

where �(Xi,�i) stands for the likelihood of IF (Xi,�i). Indeed, we
compute the likelihood of (X,�) as

L(X,�)=
m∏

i=1

�(Xi,�i). (3)

Since log function is monotonically increasing, searching for a
structure with the maximum likelihood is equivalent to seeking a
structure with the minimum energy. Each likelihood term �(Xi,�i)
is computed using the estimates of two Markov chain parameters,
the initial probability vector π0 and the transition probability matrix
�. If there are n distinct genes across the IFs (Xi,�i), i=1,...,m,
we estimate π0 as

π0 = (
c1

m
,...,

cn

m
) (4)

where cl is the total number of times l-th gene appears as the first
node among m IFs, for l=1,...,n. If crs is the total number of
occurrences of a directed edge from r-th gene to s-th gene among
m IFs, then

�=[prs]n×n (5)

where prs =crs/
∑n

s=1crs, r,s=1,...,n. Note that � captures the
overlapping information among IFs. The likelihood of an IF, say
x→y→z, can now be computed as

�(x→y→z)=P(x)×P(y|x)×P(z|y), (6)

where prior and conditional probability terms in the above equation
are known from π0 and �. The energy of a structure (X,�) can now
be computed using Equation (2).

Algorithm 1 Optimal pathway structure by SA

1: Input: IFGSs Xi, i=1,...,m, cooling schedule constant c, number
of jumps J .

2: Output: The reconstructed signaling pathway structure.
3: Initialization: At k =0, randomly select a feasible structure

(X,�
(0)

). Let BestNetwork = (X,�
(0)

) and

BestEnergy =E(X,�
(0)

).
4: for k =1,...,J do
5: Randomly choose a network (X,�) from the neighborhood

of (X,�
(k−1)

), where �= (�1,...,�m)T .

6: if E(X,�) < E(X,�
(k−1)

) then

7: �
(k) =�

8: if E(X,�) < BestEnergy then
9: BestNetwork = (X,�)
10: BestEnergy =E(X,�)
11: end if
12: else
13: Draw a Bernoulli sample with probability of TRUE as

min{1,exp(E(X,�
(k−1)

)−E(X,�)/Tk)}.
14: if TRUE then

15: �
(k) =�

16: end if
17: end if
18: end for
19: Return BestNetwork.

2.3 Feasible signaling pathway structures
Not all

∏m
i=1Li! signaling pathway structures, which can be

constructed from X, exhibit the topological properties of real-world
biological networks. To eliminate random structures from the search
space, we only consider candidates, which possess certain low-level
topological properties such as the degree distribution of underlying
structure. The degree distribution of underlying signaling pathway
structure, say (X,�), is a weighted asymmetric adjacency matrix
W obtained by counting the number of occurrences of directed
edges between all gene pairs among m IFs (Xi,�i), i=1,...,m.
Note that except for the pair of terminal nodes, the incoming
and outgoing degrees of all intermediate nodes in an IF is 1.
Since we consider (X,�) as a set of information flows, it can be
easily verified that structures obtained by randomly permuting the
orders of intermediate nodes in each IF (Xi,�i), i=1,...,m, also
have degree distribution W . Such structures preserve the marginal
degree distributions of genes and form the feasible set FX of size∏m

i=1(Li −2)!. In simulation studies, W can be obtained from the
true signaling cascades. In real-world studies, it can be approximated
by using database knowledge.

2.4 Justification of the energy function
We design and perform an empirical statistical test to show that the
true signaling pathway structure has the lowest energy in the feasible
set. Given the true signaling pathway structure (X,�), we randomly
select N feasible structures and compute the empirical P-value M/N ,
where M is the number of structures with energy lower than that of
(X,�). The true signaling pathway structure has the lowest energy
if the empirical P-value is zero. We also perform the above test
for a randomly selected feasible structure and expect the empirical
P-value to vary in the interval [0 1].
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2.5 Search of the optimal signaling pathway structure
For the search procedure, we define the neighborhood of a signaling
pathway structure (X,�) as the set of

∑m
i=1(Li −2)! structures

obtained by randomly permuting the orders of Li −2 intermediate
genes in the i-th IF (Xi,�i), keeping the remaining m−1 IFs in
(X,�) fixed, for each i=1,...,m. This definition justifies the term
‘neighbor’ as only one IF in the given structure is perturbed at a
time. Moreover, if we start our search from a feasible structure,
the algorithm is guaranteed to take jumps within the feasible set
of candidate structures having the same degree distribution as the
true signaling pathway. The above definition also satisfies all the
properties of a neighborhood presented in Goldstein and Waterman
(1988). We choose the standard cooling schedule, which at the k-th
stage is defined as

Tk = c

log(k+1)
, k =1,2,..., (7)

where c>0 is constant and is referred to as cooling schedule
constant. The choice of c is often problem specific. Indeed, a
small value of c may lead SA to get trapped in a local solution,
whereas a large value may slow down its speed of convergence.
The above cooling schedule has been used to study the convergence
properties of a general simulated annealing approach (Hajek, 1988).
The probability with which the algorithm accepts a move from a
current structure (X,�) to a neighboring structure (X,�) is called
the acceptance probability (Chong and Żak, 2008) and is defined as

min{1,exp(E(X,�)−E(X,�)/T )} (8)

where T represents the current temperature value, which at the k-
th iteration is given by Equation (7). Note that the algorithm may
accept to move to a worse point in order to avoid getting trapped
in a local solution. In Algorithm 1, we present the pseudo-code of
SA. Algorithm 1 takes an IFGS compendium as input and returns
a list of IFs, which are combined to represent the optimal signaling
pathway structure.

2.6 Computational complexity
The worst-case running time of SA is O(JmL), where J is the
number of jumps, m is the number of IFGSs and L is the maximum
length of an IFGS in the given compendium. We refer to Section
3 in the Supplementary Material for a detailed discussion on
the computational complexity of SA. Overall, SA benefits from
a manageable computational load compared with similar search
heuristics such as sampling-based Meteropolis–Hastings algorithm
used in the inference of Bayesian networks. We reemphasize
that SA and Bayesian network methods are similar in terms
of input, output and network learning strategy. In the inference
of Bayesian networks, discrete data are commonly used for a
manageable computational complexity. Thus, SA and Bayesian
network methods take the same type of input. Both SA and Bayesian
network methods share a ‘search and score’ strategy for learning
multivariate dependencies. Also, both SA and Bayesian network
methods output a directed network. The preceding factors make SA
and Bayesian network methods (i) suitable for inferring signaling
pathway structures, which are directed networks containing up to
a few hundred nodes and (ii) comparable in terms of performance
and computational time. Other non-search-based approaches, such
as MI-based methods, are computationally more efficient than

Fig. 2. Equivalent representation of a gene set compendium as discrete data.

search methods and can be used for reconstructing gene regulatory
networks with thousands of nodes. However, they are suitable
for inferring undirected pairwise similarities. Therefore, only the
comparison between SA and Bayesian network methods is relevant
to the present study.

3 RESULTS

3.1 Case Study I: proof of principle
3.1.1 Description of the datasets In this study, we evaluate the
performance of SA in inferring the true signaling mechanisms, when
gene sets are sampled from the true signaling pathway structure. As
the input for SA is an IFGS compendium, we first developed a path
sampling algorithm (see Section 1 in Supplementary Material) to
sample a collection of true IFs from a known pathway structure. The
loss of gene ordering information in IFs was simulated by randomly
relocating intermediate genes within each IF, keeping the pair of
terminal nodes fixed. We used this algorithm on each of the 120
non-metabolic pathways in the KEGG database (Kanehisa et al.,
2010) to derive 120 IFGS compendiums. From each compendium,
we removed IFGSs of lengths 2 and 3 as they represented true edges
and true IFs, respectively. Among the resulting compendiums, we
only considered the ones containing a minimum of five IFGSs to
allow overlapping among gene sets. The above procedure resulted
in 83 non-empty IFGS compendiums composing of under-sampled
IFGSs. Since each compendium was derived from a specific KEGG
pathway structure, IFGSs in a given compendium shared the same
pathway membership. In the derived compendiums, the number
and lengths of IFGSs varied in the ranges of 5–723 and 4–13,
respectively. We applied SA on each compendium individually to
infer the true signaling cascades, i.e. the ones present in the original
KEGG pathways. If there are m gene sets with n distinct genes in
an IFGS compendium, then the input for SA can be given as an
m×n matrix. If there are k genes in the i-th gene set, then the first
k locations in the i-th row contain non-zero indices representing
these genes, and the remaining n−k locations are set to 0. SA only
considers non-zero indices in each row, i.e. genes present in a gene
set. The IFs inferred by SAare assembled to reconstruct the signaling
pathway structure. We compare the inferred structure with the one
constructed from the true IFs.

3.1.2 Description of Bayesian network methods First, we note
that a gene set compendium can be written as a matrix of binary
discrete values (Fig. 2). A gene set can be naturally interpreted as
a set of genes expressed in an experiment and thus corresponds
to a vector (sample) of binary values obtained by considering the
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BA

Fig. 3. (A) empirical P-values computed for true signaling pathway
structures (Left) and randomly selected feasible pathway structures (Right)
corresponding to 83 IFGS compendiums derived from the KEGG pathways.
(B) Energy values computed by varying the cooling schedule constant for a
total of 2×105 jumps. The IFGS compendium was derived from the generic
vascular smooth muscle contraction pathway in KEGG.

presence (1) or absence (0) of genes in the gene set. We only consider
genes belonging to the given IFGS compendium. For example, if
there are m gene sets with n distinct genes in a compendium, then
the binary discrete data is an m×n matrix. If there are k genes in
the i-th gene set, then the corresponding k locations in the i-th row
of data are set to 1 and the remaining n−k locations are set to 0.
Such matrices serve as input to Bayesian network methods.

We considered two Bayesian network approaches: K2 (Cooper
and Herskovits, 1992) and Metropolis–Hastings or MH (Murphy,
2001a) implemented in the Bayes Net Tool Box (BNT) (Murphy,
2001b). Given an initial ordering of nodes, the K2 approach
is based on incrementally assigning a parent to a node whose
addition increases the score of the resulting structure the most.
MH algorithm starts from an initial directed acyclic network and
sequentially samples networks from the neighborhood of the most
recent network. Neighborhood in the context of MH is the collection
of all directed acyclic networks that differ from the given network
by addition, deletion or reversal of a single edge. For scoring a
structure, BNT provides the Bayesian Information Criterion (BIC)
and Bayesian score function. We used both BIC and Bayesian
scoring (with Dirichlet prior) functions to infer Bayesian networks.
In the case of K2, the maximum number of parents allowed
for a node was set at three for a manageable computational
complexity.

3.1.3 The proof-of-principle study We began by examining that
the true signaling pathway structure has the lowest energy in the
feasible set. We considered two collections of feasible structures.
The first collection composed of all 83 signaling pathway structures
constructed from the true IFs. The second collection contained 83
randomly selected structures, one from each of the 83 feasible
sets. Figure 3A presents the empirical P-values calculated for each
structure in the two collections, where we fixed N =1000 (see
Section 2). We observed that the empirical P-value for each of the 83
true structures was always zero while it fluctuated in the interval (0 1)
in the case of randomly selected feasible structures. This justified
the choice of the energy function used in our algorithm.

For choosing the cooling schedule constant and number of jumps,
we considered 10 IFGS compendiums of different sizes. The number
of IFGSs in the compendiums varied in the range 30–723. Note
that the signaling pathway structures in public databases are often
generic in nature. So, only a part of a signaling pathway structure

Fig. 4. F-scores (Left) and precision values (Right) from SA at jump index
1×104 (Row 1), 5×104 (Row 2), 1×105 (Row 3) and 2×105 (Row 4). We
used 10 IFGS compendiums with the number of IFGSs in the range 30–723.

will be activated under a specific context, as opposed to the
entire structure. Therefore, the above gene set compendiums are
a reasonable representation of underlying context-specific signaling
mechanisms. As a result, the choice of parameters based on our
evaluation is also applicable to other similar scenarios.

We evaluated the performance of SA by setting the cooling
schedule constant at five different levels c=1, 10, 20, 30 and 40
and the number of jumps at four different levels J =1×104, 5×
104, 1×105, 2×105. In general, a small value of c may result
in a local solution, whereas a large value of c may require large
computational time. This fact is also evident from Figure 3B, where
we present energy values from four different runs of SA with cooling
schedule constant set at c=1, 10, 20 and 30. Thus, a value of
c should be chosen to comprise between inference accuracy and
computational time. We summarize the performance of SA in terms
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Table 1. Comparison of SA and Bayesian network methods MH and K2 (using Bayesian score) in terms of computational time (in minutes) and F-score

Time F-score

103 104 105 2×105/Final 103 104 105 2×105/Final

SA 0.02 0.18 1.9 3.7 SA 0.57 0.89 1 1
MH 0.49 5.14 53.37 118.1 MH 0.11 0.16 0.17 0.21
K2 0.10 K2 0.32
SA 0.03 0.32 3.2 6.5 SA 0.69 0.91 1 1
MH 2.12 27.02 a a MH 0.08 0.11 – –
K2 0.27 K2 0.20
SA 0.04 0.39 3.9 7.9 SA 0.45 0.54 0.632 0.74
MH 2.22 21.11 a a MH 0.09 0.145 – –
K2 0.32 K2 0.37
SA 0.20 2.00 19.91 39.92 SA 0.33 0.48 0.644 0.71
MH 367.5 a a a MH 0.022 – – –
K2 14.99 K2 0.24

Performance of SA and MH is evaluated at jump/sample index 103, 104, 105 and 2×105. In the case of K2, total time and F-score is presented. We considered 4 IFGS compendiums
with 54, 108, 195 and 723 IFGSs (in the same order). In the case of MH, a structure with the highest F-score among the sampled structures was used for comparison.
aProgram terminated due to memory crash.

Fig. 5. Performance of SA in reconstructing the true signaling cascades
and signaling pathway structures corresponding to 83 IFGS compendiums
derived from the KEGG database.

of F-score and precision averaged over 10 independent runs. F-score
is defined as 2pr/(p+r), where p and r stand for precision and recall,
respectively. Precision is the proportion of true positives among the
inferred edges.

In Figure 4, we observe an increase in the performance of SA with
increasing number of jumps (Row 1 to Row 4), for each fixed value
of c. Moreover, the F-scores and precision values are overall better
in the case of c=10, compared with other values of c. In Table 1,
we compare SA, MH and K2 in terms of computational time and
F-score, where we use four IFGS compendiums with 54, 108, 195
and 723 IFGSs. We also present the performance of SA and MH
at different jump/sample indices. It is clear from Table 1 that the
total time required by SA to take 2×105 jumps may be smaller than
the time required by MH to sample 103 −104 structures. MH also
suffers from large memory requirements. Moreover, performance of
SAis significantly better than MH at different jump indices. Since K2
does not depend on the number of jumps, we list total time required
in a single run of the algorithm. At the end of 2×105 jumps, total
time required by SA is higher than K2 by a manageable difference.
On the other hand, F-scores from SA are significantly higher than

B

A

Fig. 6. Comparison of SAwith Bayesian network methods K2 and MH using
BIC and Bayesian score functions. (A and B) Shows F-score and precision,
respectively.

the ones from K2. By considering 2×105 jumps, the F-score could
be increased up to 70% in the case of a large compendium with
723 IFGSs. Thus, the parameters c=10 and J =2×105 provide
a good compromise between computational time and method
performance.

By fixing c=10 and J =2×105, we applied SA on all 83 IFGSs
compendiums. Figure 5 demonstrates the performance of SA in
reconstructing the true signaling mechanisms. On the left and middle
panels of Figure 5, we have plotted the number of structures among
83 reconstructed structures with a certain minimum precision and
F-score, respectively. On the right panel, we have considered the
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Fig. 7. An example showcasing the performance of SA in recovering the true structure using the IFGS compendium derived from GnRH signaling pathway
in KEGG database. Structures represent true (A) and inferred signaling pathways (B), respectively. The black (solid) and blue (dashed) edges represent true
positives and false positives, respectively. Figures were generated using Cytoscape (Shannon et al., 2003).

proportion of signaling cascades accurately inferred by SA in each
compendium. The feasibility and validity of SA is evident from the
high precisions, F-scores and high proportions of accurately inferred
signaling cascades.

In Figure 6, we present the results from a comparative study
performed using each of the 83 IFGS compendiums. We observe
a significantly better performance of SA in recovering the true
structure compared with the Bayesian network methods. In each
run of MH, the first 1000 samples were collected for a manageable
computational complexity and the structure giving the highest
F-score was selected for comparison. Figure 6 demonstrates the
strength of SA in inferring signal cascading mechanisms. As
described in Section 3.1.1, each IFGS compendium considered in
Figure 6 was composed of gene sets that represented true signaling
events in the corresponding KEGG structure. However, we did
not know the ordering of genes in the events. As a result, binary
discrete data used for Bayesian network methods is also a true
representation of underlying signaling events. Note that in each
sample (gene set) of binary data matrix, genes that participate
in underlying IF always fall in the same bin. Due to the use of
this true data representation, we expect all algorithms to perform
well. Nonetheless, the strength of Bayesian network methods lies in
inferring casual interactions (column–column association), whereas
SA explicitly considers signal cascading mechanism in each row.
Therefore, we observe a superior performance of SA.

We also evaluated the performance of SA when IFGSs in a
compendium shared multiple pathway memberships (see Section
4 in Supplementary Material). Results from this evaluation were
similar to the ones in Figure 6.

In Figure 7, we present a signaling pathway structure inferred
by our approach. Structures on the left and right correspond to the
true and inferred signaling pathway structures, respectively. The
black (solid) and blue (dashed) edges represent true positives and
false positives, respectively. Figure 7 demonstrates high precision

and recall in the structure reconstructed by SA, resulting in a high
F-score.

3.2 Case Study II: evaluation using E. coli datasets
3.2.1 Description of the datasets In this study, we compared
the performance of SA and Bayesian network methods using
four benchmark E.coli datasets available from DREAM3 network
challenges in the DREAM initiative (Marback et al., 2009, 2010;
Prill et al., 2010). The first two datasets comprise of 50 genes and 51
samples, whereas the remaining two datasets contain 100 genes and
101 samples. The corresponding gold standard networks comprise
62, 82, 125 and 119 edges, respectively. We compared the inferred
structures with the corresponding gold standards. We first derived
four IFGS compendiums from the above datasets by declaring
the top 10% of the measurements in each dataset as 1 and the
remaining measurements as 0. This discretization produced IFGSs
of diverse lengths across different samples. In each compendium,
we considered IFGSs with lengths in the range 3–9. This resulted
in four IFGS compendiums with 47, 45, 45 and 49 IFGSs,
respectively.

3.2.2 Performance evaluation We used SA to explore the search
spaces formed by considering all possible gene orderings of IFGSs
present in each compendium. We applied K2 and MH on the binary
equivalent data corresponding to each compendium. Since we could
not discover any structure in several runs of K2 on some of the
compendiums, we present the performance of SA and MH. In
Figure 8A, we show the performance of SA and MH in terms of
F-score ratio, which is the ratio of F-score from SA and the one
from MH. In Figure 8B, we present the performances in terms of
precision ratio. A ratio >1 indicates a better performance of SA.
In the case of SA, a structure was inferred by fixing the cooling
schedule constant at 10 and the number of jumps 2×105. In the case
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Table 2. Comparison of SA and MH in terms of computational time
(in minutes) using four E.coli datasets from the DREAM initiative

Method Escherichia
coli 1

Escherichia
coli 2

Escherichia
coli 3

Escherichia
coli 4

SA 3.41 3.25 4.47 4.50
MH-BIC 24.95 22.41 62.65 47.98
MH-BAYES 25.19 22.61 174.61 72.62

BA

Fig. 8. (A and B) Comparison of SA and MH in terms of F-score and
precision ratios. A ratio >1 indicates a better performance by SA. We used
four E.coli benchmark datasets available from the DREAM initiative.

of MH, we sampled a structure after 2×105 steps. In Table 2, we
list the computational time required by SA and MH. In Figure 8,
we observed a higher F-score and precision using SA, compared
with MH. It is also clear from Table 2 that SA benefits from a much
reduced computational cost than MH.

3.3 Case Study III: ERBB and PMOM pathways
activation in breast cancer

3.3.1 Description of the datasets In this study, we showcase
two context-specific signaling pathways, ERBB and PMOM
(progesterone-mediated oocyte maturation), activated in breast
cancer. We considered 87 genes participating in the ERBB signaling
pathway and 35 genes in the giant connected component (GCC)
of the PMOM pathway from the KEGG database. We analyzed
299 clinical breast cancer tissue gene expression profiles from the
Affymetrix HG-U133 plus 2.0 platform and considered datasets of
size 87×299 and 35×299 corresponding to the genes in the two
pathways. To derive IFGS compendiums, we discretized each data
set using equal-width binning and binary labels (Fig. 2).

Specifically, we derived two IFGS compendiums, Compendiums
I and II, corresponding to the genes in the ERBB and PMOM
pathways, respectively, with a minimum of four component genes
in each IFGS. As the majority of IFGSs (∼90% in Compendium
I and ∼94% in Compendium II) were composed of 4–9 genes,
such samples provided a good compromise between the overlapping
among IFGSs and the time for convergence. This resulted in two
compendiums with 204 and 96 IFGSs, respectively. We assigned
the end nodes for each context-specific IFGS using the hierarchial
representation of genes in different layers of the generic ERBB and
PMOM pathway structures in the KEGG database. The hierarchial
representation of a signaling pathway can be visualized using
Cytoscape (Shannon et al., 2003). Within each IFGS, a gene lying in
the upper most and a gene in the lower most layer were considered
as the two end nodes. It is worth mentioning here that layering

information accounts for the gene orderings at a very crude level
because (i) the derived IFGSs do not necessarily correspond to
signaling events already reported in KEGG, (ii) no prior knowledge
of edges in the two KEGG structures was used. Lists of genes in the
two compendiums along with their hierarchial arrangements in the
different layers of the two KEGG pathways have been presented in
Section 2 in the Supplementary Material.

3.3.2 The showcase examples We inferred two breast
cancer-specific signaling pathway structures using the derived
compendiums. To evaluate the performance of SA, we first utilized
the structures of ERBB and PMOM signaling pathways in the
KEGG database. Considering that the direction of an information
flow is often from an upper layer to a lower one in the hierarchial
representation of a signaling pathway, and the real-world gene
sets correspond to partially observed signaling events, at the
minimum we expected a larger number of inferred edges between
genes in upper layers to genes in lower layers in the hierarchial
representation of the two KEGG pathway structures. Indeed, we
verified that nearly 76% and 89% of the inferred edges follow this
hierarchy, i.e. no parent came from a layer lower than the one for its
child. This observation indicates that for a vast majority of inferred
signaling mechanisms, the flow of information was from an upper
layer to a lower one.

In the upper panel of Figure 9, we present a few reconstructed
signal transduction events, which correspond to complete or partial
linear signal cascades already reported in the ERBB and PMOM
pathway structures in the KEGG database. In the lower panel of
Figure 9, we present a partial view of the two reconstructed signaling
pathways with solid edges representing complete or partial linear
signal cascades already reported in the ERBB and PMOM signaling
pathways in the KEGG database, whereas dashed edges follow the
hierarchy of these structures and can be viewed as predictions.
While the figures do not attempt to portray a comprehensive view
of signaling pathways, SA algorithm has the potential to uncover
biologically relevant mechanisms that have not been previously
considered or understood.

ERBB/HER family receptors play important roles in many types
of cancer including breast cancer. Dysregulation/mutation in the
epidermal growth factor receptor (EGFR) and ERBB2 (HER2)
have been known to promote angiobenesis and metastasis in breast
cancer (Lurje and Lenz, 2009; Navolanic et al., 2003). Some known
signaling cascades that contribute to breast cancer progression
include RAF/MEK/ERK and PI3K/PDK1/AKT signaling pathways
that regulate apoptosis and cell cycle. These signaling events are
reflected in the edges depicted in Figure 9A. For instance, in
breast cancer ERBB2/HER2 receptor can constitutively activate
the PI3K/PDK1/AKT cascade and the downstream effector, the
mammalian target of rapamycin (MTOR). This known signaling
cascade is conformed as a direct action between ERBB2/HER2 and
MTOR in Figure 9C.

In Figure 9C, the reconstructed ERBB signaling pathway revealed
a previously unknown direct link from ERBB3 to ARAF. ARAF
(A-Raf proto-oncogene serine/threonine-protein kinase) is known
to phosphorylate and activate MEK1 (MAP2K1) and MEK2
(MAP2K2), leading to the suppression of apoptosis in cancer cells
(Roskoski et al., 2010). However, the possible role of ERBB3 as
its upstream regulator is a novel implication that clearly warrants
further investigation. In addition, PI3K family members are known
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DC

Fig. 9. Linear cascading events inferred by SA, which correspond to complete or partial linear signaling events already reported in the ERBB (A) and PMOM
(B) pathways in KEGG. Partial view of the breast cancer signaling pathways, ERBB (C) and PMOM (D), inferred by SA. A solid edge represents that a
complete or partial linear signaling event between parent and child node has been recognized in the ERBB and PMOM structures in KEGG, whereas dashed
edges follow the hierarchial arrangements of these structures.

to be the downstream targets of EGFR and ERBB2/HER2, but
not ERBB3 (Chandarlapaty et al., 2011). Thus, the direct link
between ERBB2 and PI3K inferred by SA is in accordance with
the previously established results. The direct link between ERBB3
and PIK3R3, on the other hand, suggests a potential role of
ERBB3 receptor tyrosine kinase in breast cancer. A major clinical
challenge of breast cancer treatment is acquired resistance to
hormone therapy as the tumor develops alternative survival signaling
such as enhanced cross-talk between the estrogen receptor (ER) and
ERBB1/ERBB2 (Schiff et al., 2004). Thus combinatorial therapeutic
intervention targeting both ER and ERBB2 (HER2) is currently
under intensive clinical studies (Leary et al., 2007, 2010; Osborne
et al., 2011). Revelation of the novel link between ERBB3 and
PI3K family proteins is significant because it represents yet another
adaptive pathway in breast cancer that needs to be fully understood
in order to develop a more effective regimen blocking this survival
signaling.

In the case of PMOM pathway (Fig. 9D), we show a highlighted
role of the Fizzy protein (FZR1/CDC20) in breast cancer. It is
an indication that the ubiquitin ligase activity of the anaphase
promoting complex (APC) plays an important role in breast
cancer progression. Previous studies have established an association
between APC and FZR1 (Taieb et al., 2001) implicating FZR1
regulation of ANAPC isoforms 1, 2, 4, 5, 7 and 10. We
observe additional regulation mechanisms involving ANAPC 11
and 13, apparently in a way specific to breast tumor tissues. The
reconstructed PMOM signaling pathway also reveals a novel direct

action of mitogen-activated protein kinase 1 (MAPK1) upon FZR1.
The MAP kinase cascade is associated with the control of cell cycle
progression, but in a manner that is far upstream of FZR1-mediated
APC. It is possible that this direct action may be a result of the non-
genomic signaling of progesterone (Baldi et al., 2009) that rapidly
and constitutively activates the MAP kinase signaling cascade in
breast cancers that are ER positive but progesterone receptor (PGR)
negative.

If experimentally validated and mechanistically elucidated, the
novel activation of FZR1 by MAPK1 will have important outcomes
in breast cancer research. For example, studies can be designed to
investigate if inhibiting the kinase can block FZR1-mediated APC,
and if any effector proteins are involved in this signaling cascade.
Such studies can be driven by hypotheses generated from SA-based
reconstruction of signaling pathways, and can lead to the discovery
of new biomarkers as potential diagnostic, prognostic, or therapeutic
targets for breast cancer.

4 CONCLUSION
In this article, we presented a novel SA approach to learn the optimal
signaling pathway structures from gene sets. We hypothesized a true
signaling pathway structure as an ensemble of overlapping signal
cascades. We then translated its reconstruction from unordered gene
sets corresponding to signaling cascades into a discrete optimization
problem. Throughout we treated gene sets as random variables
and their orders as random. We also introduced a novel energy
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function to measure the optimality of a signaling pathway structure.
Overall, our approach benefits from the following: (i) treatment of
unordered gene sets as random variables and building blocks of a
signaling pathway allows us to explicitly consider signal cascading
mechanisms in the underlying structure. (ii) The problem easily fits
into the framework of discrete optimization, where the feasible space
is finite but is difficult to explore. (iii) The computational complexity
of SA is manageable. In Case Study I, performance evaluation
using 83 gene set compendiums derived from the KEGG pathways
demonstrated that SA could recover the underlying structures more
efficiently than Bayesian network methods. In Case Study II, we
compared the performance of SA and Bayesian network methods
using four E.coli datasets available from the DREAM initiative. In
Case Study III, breast cancer-specific reconstruction of two signaling
pathway structures from the KEGG database further proved the
advantages of using SA in real-world scenarios.

The proposed study is useful since the prior known pathway
structures may not represent a complete picture of underlying signal
cascading mechanisms. There might exist additional mechanisms
among genes related to the pathways. Also the pathway structures
in databases are often generic, whereas scientists may be interested
in learning context-specific networks of genes in the pathways.
SA can be used in such scenarios. As gene set-based structural
inference of signaling pathways is new to the biomedical field,
refinement and extension of our algorithm is an important future
research direction for us. For example, the current setting can be
combined with the identification of pathway components from high-
throughput transcriptomics data. SA will also benefit by penalizing
random structures in the search space and improving the current
jump strategy to locate the optimal solution. We believe that gene
set-based approach is an important step toward the reconstruction of
signaling pathway structures from molecular profiling data available
in diverse forms.
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